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A new mass-conservative method for solution of the one-dimensional advection-dispersion equation 
is derived and discussed. Test results demonstrate that the finite-volume Eulerian-Lagrangian 
localized adjoint method (FVELLAM) outperforms standard finite-difference methods, in terms of 
accuracy and efficiency, for solute transport problems that are dominated by advection. For 
dispersion-dominated problems, the performance of the method is similar to that of standard methods. 
Like previous ELLAM formulations, FVELLAM systematically conserves mass globally with all 
types of boundary conditions. FYELLAM differs from other ELLAM approaches in that integrated 
finite differences, instead of finite elements, are used to approximate the governing equation. This 
approach, in conjunction with a forward tracking scheme, greatly facilitates mass conservation. The 
mass storage integral is numerically evaluated at the current time level, and quadrature points are then 
tracked forward in time to the next level. Forward tracking permits straightforward treatment of inflow 
boundaries, thus avoiding the inherent problem in backtracking, as used by most characteristic 
methods, of characteristic lines intersecting inflow boundaries. FVELLAM extends previous 
ELLAM results by obtaining mass conservation locally on Lagrangian space-time elements. Details of 
the integration, tracking, and boundary algorithms are presented. Test results are given for problems 
in Cartesian and radial coordinates. 

INTRODUCTION 

The advection-dispersion equation (ADE) describes the 
movement of miscible fluids and is widely used in several 
different scientific fields. Hydrologists use the ADE to 
describe the transport of solutes in groundwater and surface 
water. It is also used by atmospheric physicists to describe 
the movement of aerosols and trace gases in the atmosphere. 
In general, there are few applications for which there exists 
an analytical solution to the ADE. Therefore it is common to 
rely on numerical solutions to the ADE to predict solute 
movement. The most common solutions are based on the 
finite-difference methods (FDM) or finite-element methods 
{FEM). 

While FDM and FEM solutions work well for problems of 
solute transport that are dominated by dispersive movement, 
they are limited by two problems for transport problems that 
are dominated by advective movement: numerical disper- 
sion and oscillation. Numerical dispersion, common in first- 
order schemes, is the smearing of sharp solute concentration 
fronts. In terms of results of numerical simulations, numer- 
ical dispersion gives the appearance of an artificial, grid- 
dependent increase in physical dispersion. Numerical oscil- 
lation, common in second-.order schemes, is manifested by 
overshoot and undershoot about the true solution. Both of 
these problems can be resolved by the use of refined space 
and time grids; however, the added computational effort 
needed to reach the required degree of refinement commonly 
makes a simulation intractable for most computers. Many 
'attempts have been made to develop alternative techniques 
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to efficiently solve advection-dominated problems. Recent 
developments have generally been along one of two ap- 
proaches' Eulerian or characteristic methods. Eulerian 
methods use a fixed spatial grid. Included in this class are 
optimal spatial methods [Brooks and Hughes, 1982] that 
attempt to minimize the error in approximating spatial de- 
rivatives. q'hese methods make use of upstream weighting 
and hence are susceptible to time truncation errors, which 
introduce numerical dispersion, and limitations on the size of 
the Courant number {usually less than 1). Bouloutas and 
Celia [ 1988] present a comparison of several optimal spatial 
methods. For advection-dominated problems, such methods 
generally require small time steps for reasons of accuracy, 
even if they are implicit and therefore stable with large time 
steps. This is because the time truncation error depends on 
high-order time derivatives of concentration, which are large 
when a moving front passes by. Other Eu!erian methods, 
such as the Petrov-Ga!erkin FEM of Westerink and Shea 
[1989] and the total variation diminishing scheme of Cox and 
Nishikawa [1991], attempt to reduce the overall truncation 
error by using spatial errors to cancel temporal errors. Here 
the temporal discretization introduces negative numerical 
dispersion to cancel the positive spatial numerical disper- 
sion, so these methods suffer from restrictions on the Cou- 
rant number. 

Characteristic methods solve separately for the advective 
and dispersive components of the ADE. Advection is solved 
on a Lagrangian-type grid by tracking along characteristics 
of the velocity field. Dispersion is solved on an Eulerian 
spatial grid. Many approaches to characteristic methods 
have appeared in the literature under a variety of names, 
including Eulerian-Lagrangian methods [Neuman, 1981, 
1984], method of characteristics [Garder et al., 1964; K{mi- 
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kow and Bredehoeft, 1978], modified method of characteris- 
tics [Douglas and Russell, 1982; Russell, 1985; Russell et aI., 
1986], and operator-splitting methods [Espedal and Ewing, 
1987; Dahle et al., 1988]. These approaches have greatly 
improved time truncation errors compared to standard FDM 
and FEM or Eulerian methods. Therefore large time step 
sizes may be taken with little loss of accuracy. Problems 
with characteristic methods, in general, arise in three areas: 
inability to rigorously treat boundary fluxes when character- 
istics intersect inflow or outflow boundaries, inability to 
ensure conservation of mass, and the introduction of numer- 
ical dispersion, for some methods, due to low-order interpo- 
lation or integration [Healy and Russell, 1989]. The mass 
conservation problem is due to the aforementioned bound- 
ary problem and the use of the nondivergence form of the 
ADE. With the nondivergence form, errors in the velocity 
field and in tracking of characteristics result in errors in mass 
conservation. The Eulerian-Lagrangian localized adjoint 
method (ELLAM) of Celia et al. [1990] and Russell [1990] 
presents a consistent framework for treating boundary fluxes 
and guaranteeing mass conservation in a finite-element ap- 
proach. 

This paper presents details of development and implemen- 
tation of a finite-volume Eulerian-Lagrangian localized ad- 
joint method (FVELLAM). FVELLAM is an extension of 
the work of Celia et al. [1990] to an integrated finite- 
difference setting. The new method shares some advantages 
of ELLAM such as consistent treatment of boundaries and 

global mass conservation. In addition, FVELLAM obtains 
local mass conservation on Lagrangian space-time control 
volumes and makes the ELLAM framework more conve- 

nient for existing solute transport codes that are based on 
finite volumes or body-centered finite differences. Like 
ELLAM, FVELLAM has the capability to treat problems 
with variable coefficients (due to variable velocity field or 
variable spacing). The methodology by which this is accom- 
plished is discussed. The utility of the program is demon- 
strated with two example problems, the results of which are 
compared to those of standard FDM and analytical solu- 
tions. Limitations of the approach and extension to multiple 
dimensions are also discussed. 

METHODS 

Derivation of Equations 

The one-dimensional advection-dispersion equation, un- 
der conditions of uniform porosity and incompressible fluid 
and media, can be written along with appropriate initial and 
boundary conditions as 

Lc •• Oc(x• t) o( + -- v(x, t)c(x, t) - D 
Ot ax Ox 

=f(x, t), x • [0, l] = • t G [0, T] (1) 

c(x, 0)= co(x), c(x, t) = h(x, t), 

or 

-D 
ac(x, t) 

-. = h(x, t), 
Ox 

or 

ac(x, t) 
v(x, t)c(x, t) - D •= h(x, t) x = 0, x =t 

Ox 

Eulerian-Lagrangian localized adjoint methods consider 
the weak form of (I) obtained by integration against the 
space-time test function w(x, t)' 

for fl (Lc - f)w dx dt= 0 
Substituting (1) into (2) and noting that 

ac O(cw) aw 
• W--' C 
ot ot ot 

• v c - D w = D w O x •xx v c - 

- vc - D • 
we can write: 

'f0 r o(c(x, t)w(x, t)) 
ß • v(x, t)c(x, t)-D--(x, t) w(x, t) dxdt 

Ox Ox 

for •i Oc aw + D•x x (x, t)-•- x (x, t) dx dt 

- c •-t (x, t) + •,(x, t) •xx (x, t) dx dt 

= f(x, t)w(x, t) dxdt 

The term (aw/at) + v(aw/ax) appearing in the fourth 
integral on the left-hand side is the adjoint associated with 
the hyperbolic part of L. We first divide time into discrete 
intervals It n, t n+ l ] such that At = t n+ • - t n and require 
that c be continuous on each time interval. In addition, wl.r, 
t) must vanish for t q• [t '•, tn+l]. Equation (3) can then be 
rewritten 

C(X, tn+i)w(X, t n+l) dx + 

ß [v(x, t)c(x, t) - D ac(x, t).l . n(x)w(x, t) dS ,It Ox 

t•+• fl ac(x, t) aw(x, t) + D 

.•t • Ox ax 
dx dt 

x, t) (au'( x, t) at awtx, •.),t.x ,It •+•(x,t)- ax 
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= •i C(X, tn)w(X, tn) dx 
+ f(x, t)w(x, t) dx dt, (4) 

where Green's formula has been employed to transform the 
s•ond integral on the left-hand side to an integral over the 
domain boundary 011, and n(x) is the outward unit normal on 
Off. In the one-dimensional case, 0f• consists of the two 
points 0 and i, with n(0) = - 1 and n(l ) = 1. That integral 
now represents boundary fluxes and will be nonzero only 
near boundaries. 

We next divide the spatial domain into intervals or finite 
volumes [ xi-(•/2), xi+(l/2)] of length/Xx•, with node x• at the 
center; thus, xi+(•/2) = x• +- (Axd2). With each finite 
volume we associate a test function w•(x, t), which we now 
define. 

Given a point (.•, t-}, with F• [t •, t•+•], we consider the 
ordinary differential equation x'(t) = v(x(t), t), x(t) = •, 
that tracks the advective flow from (•, t). Denote the 
solution of this equation at time t, x(t), by X(t; •, t). This 
notation can refer to tracking forward or backward in time; 
in particular, we define 

X* = X(t n' x, tn+l), 

•; __ x(tn+l. x t n) 

so that (x, t n+l) backtracks to (x*, t •) and (x, t n) tracks 
forward to (5:, t n+ 1). The interval [ * * X i-(1/2), X i+(1/2)], illus- 
trated in Figure 1, tracks forward to the finite volume 
[Xi_(1/2), Xi+(lt2)]. The ELLAM method selects w(x, t) so 
as to make the adjoint integral of (Ow/Ot) + v(Ow/Ox) vanish 
for all x and t; thus, we seek w(x, t) that is constant along 
flow lines. At time t "+• , it is natural to ask that w•(x, t n+• ) 
be 1 in the finite volume [x•-(m), Xi+(l/2)] and 0 outside. 
Hence, we define 

wi(x, t)= 1 X(t"+•; x, t)• [xi-{1/2), xi+(•/2)], 

t • It n, t n+l] 
(6) 

wi(x, t) = 0 otherwise 

At time t n, we see that wi(x, t n) is 1 if x • [x i-(l/2l, 
x•+•2)] and 0 otherwise. In Figure 1, wi(x, t) would be 1 
inside the parallelogram and 0 outside. 

Noting that Owi/Ox(x, t n+I) is now a delta function at 
xi-•a} and xi+(•/,), a one-step backward Euler approxima- 
tion at t n+ • to the•ime integrals in (4) results in the following 

Fig. 1. Spatial grid with characteristic lines. 

Fig. 2. Concentration as linear function o[ distance between 
nodes, showing the applicability of the trapezoid rule with two 
subintervals 1I and II). 

equation for interior cells that are not affected by boundary 
fluxes: 

l •'*•2' c(x, t n+l) dx 

+ DAt[Ox {Xi_tl/2}, tn+ !)--• (Xi.tl/2•, tn • 
= •,X•:, c(x, t •) dx + At f(x, 

J.rt•t t•2• d 

The boundary flux integral is addressed in detail in subse- 
quent sections. 

Previous ELLAM simulations have been limited to a 
finite-element approach. Here, (7) is solved with an inte- 
grated finite-difference approach. We believe this approach 
is beneficial for the following reasons. First, there are many 
widely used finite-difference flow and solute trans•n mod- 
els in both the groundwater and oil industries t•ay. M•i- 
fications of such codes to inco•orate the FVELLAM is 
likely to be more cost-effective than completely rewriting 
finite-difference codes to use the finite-element ELLAM. 
Second, we believe that our approach may have some 
advantages over the FEM in treatment of variable coeffi- 
cients and boundary fluxes. Finally, by defining the test 
function w i as above, we are able to conserve mass locally 
on the Lagrangian elements described by 
and [t n, t "+ 1] and shown in Figure 1. 

The integrals in (7), with the exception of the first integral 
on the right-hand side, are approximated by standard numer- 
ical integration techniques. 

The spatial derivatives of concentration are approximated 
by assuming that concentration varies linearly in space 
between adjacent nodes. Typically, finite-volume methods 
lump the storage integrals, i.e., they assume that concentra- 
tion is piecewise constant within each cell. We found that 
this approach introduced unacceptable levels of numerical 
dispersion into results for some problems. Hence it was 
decided to again assume a linear variation in concentration 
order to evaluate these integrals. This leads to a scheme that 
combines Lagrangian aspects with control volume finite- 
element approaches of earlier authors [e.g., Baliga and 
Patankar, 1980: Liu and McCormick, 1988; Forsyth, 1989; 
Heinemann et al., 1989; Rozon, 19891. The trapezoid rule is 
then exact for the first integral on the left-hand side of {7}. 
With each cell broken into two trapezoids and three integra- 
tion points (Xi-11/21, Xi, Xi+.11/2}) as shown in Figure 2, we 
have 
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,,+(x,..) c(x, t n+•) dx i-(1/2) 

' 
for uniform spacing and 

(Sa) 

'+('"') c(x, t "+•) dx 
i-(1/2) 

= Axi Axi• '• Axi ci-i 

c• +1 + + x-fll 7 + + 

+ • Axi + axi+• c (8b) 
for variable spacing. For cells that are adjacent to inflow (i = 
1) and outflow (i = L) boundaries, (8) takes the form 

C(X, t n+l) dx = ax Cl/2 + • C + • 
d X I/2 

for uniform spacing and 

x3a C(X, t n+l) dx X ll2 

(• n+l --. AX1 Cll 2 + +- c• 4 Ax• + }Xx2 

1 ax• c•+• ) +4 Axe+ Ax 2 
for variable spacing; 

•-+(m) C(X, t n+l) dx 
r 

= ax cz_• + • +• cz+(•/2) 

for uniform spacing and 

dXL-(ll2) 

n+l 
CL-I 

(• I .•X•.l..1 •+1 1 n+l ) + +• ax•_• + ax,] c + • c,•+(•/2) 
for variable spacing, where c •/2 and CL+(i!2 ) refer to concen- 
trations at the boundaries; definitions for these variables are 
given in the discussion of boundary conditions. The corre- 
sponding equations for use in a radial coordinate system are 
given in the appendix. 

With suitable choices of integration rules, (7) is identical to 
the equation solved by the modified method of characteris- 
tics (MMOC) [Douglas and Russell, 1982]. However, in 

practice, FVELLAM does not solve this equation. Instead, 
the storage integral on the right-hand side of (7) is modified. 
We revert to (4) and make the following approximation: 

f•* fo' n) ,+(,m c(x, t n) dx• c(x, t Wi(x, t dx (9) 

where Wi(x , t) is an approximation to wi(x, t) that is 
introduced in order to avoid problems that will be discussed 
in a later section. Note that Wi(x, t) may take on nonzero 
values for x • [xi-(1/2), xi+(•/2)]; hence the limits of 
integration are changed in (9). 

Two approaches can be used to calculate the integral on the 
right-hand side of (9). The approach commonly used in char- 
acteristic methods is to apply a numerical integration rule at 
time level n + ! using standard values for W(x, t)and 
backtracking to time level n, where concentrations are known, 
from xi-(m), xi+(l/2) and intermediate integration points. Values 
for c(x*, t n) are then calculated by linear interpolation inx, and 
the numerical integration is carded out. Complexities arise 
with this approach when inflow boundaries are intersected 
during backtracking, and we know of no simple way to ensure 
mass conservation because the integration points may not be 
regularly spaced at time level n. 

An alternative approach to evaluating the integral in 
question has recently been put forth by Russell and Trujillo 
[1990]. Here the numerical integration rule is applied at t n. 
Integration points, along with the integration weights asso- 
ciated with them, are forward tracked up to time level n + 1. 
For this approach, standard values for c(x, t n) are used, but 
values for W(x, t •) = W(•, t •+ •), where • is the location 
at t n+ 1 obtained when forward tracking from x at t n , must be 
obtained through forward tracking. This scheme has the ad- 
vantage of straightforward mass conservation and av•ding 
backtracking off of the spatial grid. Forward tracking does 
encounter the problem of intersecting outflow bound•es dur- 
ing tracking, but this problem can be easily treated. We have 
adapted this alternative approach for use in FVELLAM. 

For the one-dimensional problems considered in this •- 
per and when v(x, t) is of a simple form (e.g., constant or 
linear in x and t), a third alternative to evaluating the integral 
in (9) is exact integration. Exact integration uses a back- 
tracking approach and takes advantage of the linear variation 
in concentration between nodes. Its use for one-dimensional 
problems has recently been put forth by M. A. Celia (per- 
sonal communication, 1991). We do not propose this ap- 
proach here because it is not practical for multidimensional 
problems; however, exact integration is used for comparison 
purposes in discussion of computational results. 

Regardless of whether a backward or forward tracking 
approach is used to evaluate the integral in (9), care must be 
taken when selecting a numerical integration rule. The rule 
should conserve mass, and the density of integration points 
must be great enough to faithfully represent any sharp 
concentration fronts. If the latter condition is not met then 
numerical dispersion (or possibly oscillation) could enter 
into the solution. 

Integration at Time Level n 

Several different numerical techniques were investigated 
for evaluating the integrals in (9). As long as the selected 
technique is conservative, then our method will conserve 
mass (assuming of course that boundaries are also mass 
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NS=2 NS=4 NS=8 'l 
, , i ! i i i 

i ! 
i i 

X•I-3 2 XI-I XI-1/2 •1 Xi+l/2 '•i+I 

Fig. 3. Location of spatial integration points for NS = 2, 4, and 8. 

conservative). Because of the inherent assumption that 
concentrations vary linearly between adjacent nodes, the 
obvious choice for integration scheme is again the trapezoid 
rule (Figure 2). Because of the lineafity in c, this method will 
be exact when W -- 1, and thus mass will be conserved 

globally. To calculate the integral, concentrations at integra- 
tion points that are not nodal locations are determined by 
linearly interpolating between adjacent nodes. 

While the trapezoidal method conserves mass, it became 
obvious during testing of the method that three integration 
points per cell were not sufficient to avoid numerical disper- 
sion for all problems. Higher-order integration methods 
(Simpson and Lobatto-type rules) were investigated to ad- 
dress this problem. However, these methods produced an 
inconsistency in the difference equation because different 
formulas were used to represent left- and fight-hand side 
storage integrals in (7), namely, a trapezoidal (exact) inte- 
gration on the left and a higher-order rule on the fight. The 
net result of this inconsistency was the introduction of 
negative numerical dispersion, the severity of which was 
strongly dependent on the cell Peclet number (Pc) and the 
Courant number (Cr). These matters are covered in detail 
elsewhere (T. F. Russell and R. W. Healy, manuscript in 
preparation, 1993). It was decided to use the trapezoid rule, 
but to increase the number of subintervals within each cell 
over which the rule is evaluated. The number of subintervals 

is referred to as NS. The test function Wi will depend on NS 
in a manner to be described in a later section. A value of 2 for 

NS corresponds to the original trapezoid rule. Subintervals 
are equally spaced within each cell, and Figure 3 shows the 
distributions of subintervals for NS = 2, 4, and 8. Although 
increasing the value of NS allows for more accurate distri- 
bution of mass at time level n + 1, it does not affect the 
accuracy of mass conservation at time level n; values of NS 
= 2 and NS = 16 produce the same total mass for the integral 
at time level n. Our experience has shown that a value of 4 
for NS was sufficient for solving most problems. As pro- 
grammed now, the code uses the same number of subinter- 
vals for all finite-difference cells in the spatial grid. However, 
an adaptive approach could be easily incorporated so that 
finer discretization could automatically be incorporated in 
the vicinity of sharp fronts. Such a modification will be neces- 
sary to make the method practical in multiple dimensions. 

Once the number of integration points has been deter- 
mined, the integral in (9) can be evaluated by 

'c(x, t •) W•(x, t •) dx 
NT 

= Z c(xl•, tn)U(xk)Wi(•(xlO, t n+•) 
k=l 

(1o) 

where x t. is an integration point, c( x•, t n) is determined by 
linear interpolation, U(x• ) are the integration weights: 

U(xt) = • (xk+• - xk) k = 1 

U(xk)=k(xt+t-xk_l) I <k<NT 
,. 

1 

U(xk) = • (x•, - xt-1) k = NT 

and NT is the total number of integration points. 
This method of integration at time level n and forward 

tracking up to time level n + 1 works very well for the case 
of constant coefficients (i.e., constant grid spacing and 
velocity). However. tbr problems involving variable spacing 
or velocity this approach may fail to properly distribute the 
integrated mass from t • to the nodes at t n+l . This problem 
is manifested by inequality between the sum of the tracked 
weights U(x•)Wi(•(xk), t •+ •) into a particular cell and the 
total weight (Axi) of the cell, or equivalently by inexactness 
of the integral in (9) when W = 1. Essentially, the method 
attempts to lump more mass into a cell than the cell can 
contain. This results in a violation of the maximum principle: 
In the absence of any boundary influence, calculated con- 
centrations for the cell at t '•+• may be greater than the 
concentration at t • in cells that track into the cell of interest. 

The resulting concentration field then contains oscillations. 
This problem can be viewed as a failure to satisfy mass 
conservation locally in the finite volume [ x•-•/2•, x•+•/2•] 
although the global mass balance is not affected. 

The severity of this problem can be reduced by simply 
increasing the number of equally spaced integration points. 
A more efficient approach is to add integration points at t n at 
specific locations. These locations are called strategic space 
integration points (SSIP). The locations of the SSIPs are 
determined by backtracking from certain points on the grid 
from time t '•+• to t •. Further details on determining SSIP 
locations are presented in a subsequent section. On average 
there are three SSIPs per grid cell. Since backtracking 
requires an amount of work identical to forward tracking, 
inclusion of SSIPs is identical, in terms of work, to increas- 
ing NS by 3. Equation (10) requires no modifications to 
accommodate these new integration points. Inclusion of the 
SS!Ps, in conjunction with selection of an appropriate value 
for NS, can completely eliminate oscillations from most 
problems and reduce their severity for particularly stubborn 
problems to a level where they are of no practical concern. 

Tracking 

Integration points at time level n are forward tracked 
according to the second part of (5). For backtracking, the 
first part is used. To accomplish the tracking, it is assumed 
that the velocity is known at the intercell boundaries (i.e., 
Xi_(I/2}, Xi.+(lt2), ''' ) and that velocity is steady in time and 
varies linearly across each cell. Points are tracked cell by 
cell using the procedure described by Pollock [ 1988] with the 
following formula: 

Xp(tj+l) = xt,(t J) + (IFB)v(xp(tj), 

ß {exp {AAtj. • - 1 }/A ( ! 1) 

where xt,(t j) is the position of the integration point at time t.•' 
j is an index to time substeps; At.• is the length of a time 
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substep, equal to the time required for a point to be tracked 
across a complete or partial cell; 

J 

• At.• = •xt; 
j=l 

J is the total number of time substeps; tj is the time at 
; = t n for forward tracking and t n+l for substep j to 

backtracking; IFB = + 1 for forward tracking and -1 for 
backtracking' and A = Ov/Ox for each cell. Equation (11) is 
inverted to solve for Atj so that xp(tj.•) is equal to a cell 
boundary for all time substeps except the final step. 

Selection of Approximate Test Functions 

The requirements on the approximate test function W(x, 
t) are that it must be continuous on the space-time domain in 
equation (6), be nonzero only on It n, tn+l], and satisfy 
Wi(x, t) = 1 for x • [0, t], t • [t '•, tn+•]. There are an 
infinite number of functions that meet these requirements. 
The simplest of these functions is given by (6). This form for 
Wi(x, t) was initially used in our method. Essentially, this 
form lumps all advected mass into the finite-difference cell in 
which • falls. This function works well for many problems, 
but when Cr is close to an integer value, results are sensitive 
to the size of the Courant number. Slight differences in Cr 
can result in mass's being accumulated in different cells; for 
example, a problem with a value of Cr = 1.01 will result in 
a faster propagation of a solute front than the same problem 
with Cr - 0.99. 

A more general approach to distributing the mass at time 
level n + 1 is to partition the mass among two or more 
adjacent cells. For a linear distribution of tracked mass, 
Wi(x, t) takes the form of the familiar "chapeau" function: 

xi-5: 
Wi(œ, t n+l) = 1 - xi_ 1 <: .• • x i 

x i • xi_ 1 

œ-xi 
Wi(.•, t n+1) = 1 - • xi <-- 5; --< Xi+ 1 (12) 

Xi+l - xi 

Wi(.• , t n+!) -- 0 • < xi_ 1 or .• > Xi+l 
For most problems of practical concern, this form of the 

test function produces excellent results. However, for prob- 
lems with small Cr and NS > 2, (12) introduces numerical 
dispersion into the results. That dispersion is particularly 
apparent at the limiting case of Cr = 0. The desire to insure 
no numerical dispersion for this case motivated development 
of the following form of the test function, which is imple- 
mented in our method: 

Wi(5:, t n+l) = 0 œ < xi-(1/2)- Axi-1 (13a) 

Wi(• tn+l) AXi ( Xi-(l/2) -- •) = ! - •- (13b) 
' Axi_ 1 + l•x i •XXi_ 1 

xi_(•/2 ) -- Axi_• --< • '< xi_(•/2 ) 

AX i + (Jr -- xi_(l/2))AXi_l/AXi 
Wi(•, t ni) = (13c) 

Axi_ 1 + Ax i 

Xi_(l/2 ) < j: _< Xi_(l/2 ) + Ax i 

Wi(•, t n+l) = 1 Xi_(1/2 ) q- Ax i .< .• •--< xi+(l/2 ) -- •ci 

(13dl 

AX i + (Xi+(ll2) -- .•)l•Xi+l/l•Xi 
, •13e} Wi(• t •+1) = Axi + Axi+ 1 

Xi+(1/2) -- Axi '< • ---• xi+ I 1/2t 

• = -- 1 - -- {13f) Wi(• , t +1) Axi • l•Xi+l AXi+l 
Xi+(l/2 ) • .• '< Xi+(ll2 ) 4r AXi+ ! 

Wi(5;, t n+l) = 0 -• > xi+(I/2) + AXi+l (13g} 
where Axi = zXxi/NS, i = 2 to L - 1, and L is the t0• 
number of finite-difference cells. For cells that are adjacent 
to boundaries (i = 1 for x = 0 and i = L for x = l) equations 
(13) require slight modifications. When i = 1, (13b)-(13d) 
are replaced by 

Wl(.•, t n+l) --- 1 0 •< .• <• X3/2 -- AXl, (13h} 

and when i = L, (13d)-(13f) are replaced by 

WL(•: , t n+l) -' 1 XL_(1/2 ) + Ax L < • -< 1. (13i• 

Substitution of (13) into (10) produces an equation identical 
in form to (8) on the fight-hand side. 

Test functions are illustrated at t n+• for a uniform spatial 
grid in Figure 4 for NS = 2, 4, and 8; and for a nonuniform 
grid with NS = 4. Discussion of the approximate test 
functions used for a radial coordinate system is given in the 
appendix. For NS = 2, (13) reduces to (12). It is interesting 
to note in Figure 4b that Wi_l(Xi_(1/2 ), t n+l) is less than 
Wi(xi_(l/2), in+ 1), even though xi-(1/2) is closer to x•_• than 
to x i. 

It is now possible to fully describe the location of the 
SSIPs. The SSIPs are obtained by backtracking from the 
points on the grid where the slope of the test function 
changes. There are three such points in each cell i: xi_tl/21, 
Xi-(I/2) 2r •'-•i, and Xi+(i/2 ) -- A'• i. These points are 
backtracked from time level n + 1 to level n and then 

incorporated into the numerical integration scheme. Because 
the tracked location of the SSIPs at time level n + I is 
known, there is no need to forward track these points 'along 
with the other integration points. 

Inflow Boundaries 

Inflow boundaries come into play when a spatial boundao' 
is intersected at time t* when backtracking along i-(1/2) > tn 
the characteristic curve from x•-(l/2) at t n+l (Figure 5}. 
When this occurs, (7) must be modified, as the boundary flux 
integral is now nonzero' 

fl •'+•'"'• c(x, t •+•) dx 
t-(l/21 

+ D[(tn+ I ß Oc tn+l -- t i-(l/2)) •X (Xi-(l/2)' ) 
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c•C 

- •t • (Xi+{l/2), t n+l) 
Ox 

+ v(x, t)c(x, t) - D 

ß n{x)Wi(x, t) dS dt =/i c(x, tn)Wi(x, t n) dx 
•'+{•:' •)at(x) dx f(x, t n+ 

I/2t 

(14) 

where At(x) is the time in which x backtracks to the 
boundary thus At(xi_(1/2 )) = t n+ ! * ß - t i-{]/2) and At(x) = 
At if x does not backtrack to the boundary. 

The approximate test function W(x, t) has been inserted 
into the boundary flux integral. In the case where backtrack- 
ing from xi+(1/2 ) at t n+l also intersects the boundary (at 

, t i+(1/2}) then At is replaced by t n+• * , -- t i+(1/2 ) in the 
dispersion term and the first integral on the right-hand side of 
the equation vanishes. With the exception of the boundary 
flux integral, all terms in (14) are treated as previously 
described. 

Dirichlet condition. The boundary flux integral for the 
Dirichlet condition becomes 

ftt n+ 1 - h(O, t)Wi(.•, tn+])v(O, t) dt 
n 

ft t"+t OC tn+l ) ) - D • (0, t) Wi(•, dt (15) 

Fig. 5. Characteristic line intersecting inflow boundary when 
backtracking for time level n + I. 

where •'{t) = X{ t •+•' 0, t) is now the forward tracked point 
in space at time t n+ • starting from time t at x = 0, the inflow 
boundary is at x = 0, and h(x, t) is the boundary data 
function in { 1). The dispersion integral is approximated by an 
integral over [xi_(i/2 ), .t:i+•l/21] at t n+l using dt = {l/v) dx 
and the resulting terms are incorporated into the implicit 
solution of (7). The dispersive boundary flux can then be 
calculated. The advective boundary flux term is treated by 
numerical integration in time and forward tracking of the 
integration points in time from the boundary onto the spatial 
grid. We again use the trapezoid rule to evaluate the integral. 
Intermediate time integration points may be included be- 
tween t n and t '•+i and are denoted by t* • where 

t• = t n 

t•_] < t• 1 --< k - K (16) 

t•- -' t n+l, 

and K + 1 is the number of time integration points, 
We can then write 

ft t•+• h(O, t)v(O, t)Wi(,•, t n+•) dt 
n 

1 0 NS---•- Wi_ 1 , W t •Vl+l • 
XI-.3/2 "I(}-1 XI-1/2 X•i XI+I/2 XI+I XI+3/2 

Fig. 4. Approximate test functions at t n+ i. (a) NS = • 4, and 8 
for uniform grid' (b) NS = 4 for nonuniform grid. 

K 

_ k• 1 ft•' h{0, t)l•(0, t)Wi{.•', t n•-! } dt = dtr-• 

Applying the trapezoid rule produces 

tr h(O, t)v(O, t)Wi()•', t n+ I} dt • (t•- t•_i) 
dtt-, 

ß [h(0, t})v(0, t}.)Wi(X(t n*•' O, t•l, t n*•) 

+ h(0, t}_]•lx,l,0, t}_•]Wi(X(t n•' O, t}_•), tn+•] 

+ (t•-- t•-_l)h(0, t•,,)v(0, t•-)Wi(,Y(t n+l' O, t•.), t n*l} 

(17) 

(!8• 

I19) 

The procedure followed is to select the integration points 
t}, determine the integration weights given in t19}, forward 
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track from the boundary from t} to t "+ 1 to determine .•, and 
finally to calculate Wi(•, t "+l) for each i. The tracking 
scheme is described by (11), with xp(t•) representing the 
location of the boundary. Equation (13) is again used to 
calculate Wt(œ, t "+ 1). 

Selection of the appropriate number of time integration 
points is dependent on two requirements: accurate integra- 
tion of the integral in (18) when W --- 1 to obtain the correct 
total mass, and proper distribution of the tracked mass from 
the boundary into the spatial grid. The implications of the 
first requirement are related to the behavior of v and h 
between t n and t n+l. If the customary assumption of 
linearity for both variables is made, then all terms on the 
right-hand side of (19) reduce to a function of v and h at t n 
and t n+ •. So, in effect, no intermediate integration points are 
needed. Although this assumption will undoubtedly be used 
in most applications, it is not necessary for this method. 

The second requirement will usually be more restrictive 
than• the first. Improper distribution of mass leads to failure 
to conserve mass locally on [xi-(•/2), xi+(•/2)] and is mani- 
fested by concentrations near the boundary which are not 
equal to h, when h is constant in time and t approaches 
infinity. These concentrations may be slightly less than or 
greater than h and can produce slight oscillations near sharp 
concentration fronts. To aid in properly distributing mass, 
we have incorporated strategic time integration points 
(STIP) into the method. The STIPs are determined as were 
the SSIPs, by backtracking from the points on the spatial 
grid where there is a change in slope of the test function. If 
the backtracking encounters the inflow boundary, then the 
time at which the boundary is encountered becomes a STIP. 
An important component of our method is, therefore, to 
backtrack at the start of each time step from the three points 
in each spatial grid cell where the slope of the test function 
changes. Those tracked locations that intersect a boundary 
become STIPs, while those locations that remain on the 
spatial grid become SSIPs. The range of integration points 
given in (16) can now be reduced by substituting the largest 
STIP that is less than t i+(1/2) for t (assuming * t i+(1/2) > ) 
and substituting the smallest STIP that is greater than t 
for t n+l (assuming * n+• n+l ti_(1/2) < t ) as Wi(•, t ) is zero 
for t* outside of this range. 

For constant-coefficient problems, there is no need for any 
additional time integration points other than the STIPs. Use 
of only the STIPs will properly distribute the inflowing mass. 
For variable-coefficient problems, it is sometimes necessary 
to add additional time integration points to insure proper 
distribution. Additional integration points may be added at 
uniform intervals between t* * i+(1/2) and t i-(1/2)-The addition 
of NS new time integration points between t•_(1/2 ) and 
t i+(1/2) is sufficient to impart the same resolution to the 
boundary flux tracking that is contained in the tracking of 
spatial integration points. For most problems, fewer than NS 
such new points per interval are required to insure proper 
mass distribution. 

Application of boundary conditions to a body-centered 
grid requires some discussion. Referring to Figure 6, loca- 
tion Xl/2 corresponds to x = 0 in the previous discussion, 
and h(0, t) is really h(x •/2, t). When the Dirichlet condition 
is employed, consideration must be given as to how c(x, t •) 
is defined when x •/2 -< x --- X l. These values are required for 
the numerical evaluation of the integral in (!0). Linear 

1 I ß ' X2 X1/2 X3/2 X5/2 

Fig. 6. Body-centered finite-difference grid showing boundary 10. 
cation. 

interpolation between x •/2 and x • is used to determine these 
values. 

Neumann condition. The boundary flux integral for the 
Neumann condition becomes 

( •tt n + 1 -- c(O, t)v(O, t)Wi(• , t n+l) dt 

- t"* h(O, t)Wi(.•, t n+l) dt (20} 
n 

The specified flux occurs at x 1/2 and the boundary condi. 
tion can be stated as 

-D- (Xl/2, t)= h(0, t) (211 
Ox 

Approximating Oc/Ox by 

C(X1, t) -- C(X1/2, t) 

X 1 -- X1/2 

(21) can be rearranged to solve for c(x•/2, t): 

c(x t) = c(x, t) + 
h(0, t) 

(Xl - x 1/2) (22) 
D 

Then, as in the Dirichlet condition, linear interpolation 
defines c(x, t •+ 1 ) for x •/2 <- x -< x •. The advective integral 
is treated as described in the previous section. 

Total-flux condition. The boundary integral in (14) actu- 
ally represents the total solute flux through the boundary. 
The boundary integral for the total-flux boundary is 

n+l - h(O, t)Wi(• , t n+•) dt 
Jt • 

and the boundary condition is 

Oc 

v(x•/2, t)c(x•/2, t) - D • (x•/2, t) = h(0, t) (23t 
Ox 

Again approximating •c(xl/2, t)/Ox by 

C(X1, t)- C(X1/2, t) 

X I -- X1/2 

gives the following value for c(x •/2, t): 

C(Xl, t) + [h(0, t)(x 1 -- Xl/2)]D -1 
C(Xl/2, t)= ! + [v(xl/2, t)(x•- xl/2)]D -• !24t 
Using this value, the dispersive flux across the boundar5 can 
be calculated from the advective flux. The advective flu•, can 
then be treated as previously described. 
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17 +1 ( 

A 

X[_ 1 •2 

,. ,, 

i 

xi-! xi_l/2 xi Xi+l/2 x•+l 

t n+l 4' -' I ' '' 

b t n < : • 

XL_i '•L-1/2 XL XL+I/2 

i :. •i / . • 
X L+l/2 

Fig. 7. (a) Characteristic line intersecting outflow boundary 
when forward tracking from time level n. (b) Backtracking from 
boundary to determine 

Outrio**' Boundaries 

Outflow boundaries come into play when forward tracking 
from xi+(1/2) at t n results in the case that the boundary 

* n+l 
(assumed to be at x = l) is intersected at t i+(1/2) < t 
(Figure 7). To obtain a modified version of (7) for this case, 
we consider Figure 7b. Note that the equation for the last 
finite volume [XL_(i/2), XL+(i/2)], where L denotes the 
finite-difference cell adjacent to the outflow boundary, does 
not cover the triangular space-time region with comers (l, 
t"+l), (l, tn), and (x•+(•/2), t"). We seek an equation 
corresponding to this region, requiring us to designate an 
associated unknown. We let WL+ • (x, t) be the test function. 

Before developing the outflow equation, we must deter- 
mine the form of W L+i The point * is an SSIP. . XL+(1/2) 
According to our scheme, those spatial integration points 
between x œ-tl/2) and x},+(•/2) send all of their mass to the 
interior of the grid, while those between x•.,+(l/2 ) and I send 
all of their mass to the boundary. The mass associated with 
X* n L+tl/2) at t is split between the interior and the boundary 
according to the proportions of mass lying to the left and 
fight of x[ +(1/2)- With this understanding, we can define the 
discontinuous function Wœ + • (x, t) as 

WL+•(X, t n+•) = 0 0 --< x < I 

WL+•(I, t) = 1 t n -< t < t n+l 
and correspondingly: 

WL(x, t "+l) = 1 XL_(]/2 ) + AX L <-- X < I 

WL(I, t) = 0 t n--<t< t n+l 
These definitions allow us to separate the outflow bound- 

ary terms from the conservation equation (7) for interior 
cells. In particular, (7) may be written for i = L by simply 
changing the limits in the right-hand side integral of (9) to 
zero to x L+(I/2)- 

The outflow equation can now be derived. All three types 
of boundary conditions that were discussed for inflow 
boundaries are applicable to outflow boundaries. However, 
in practice the Neumann condition with no dispersive out- 
•ow is used almost exclusively in groundwater solute trans- 
port problems. Therefore this is the only condition that is 
discussed here. Details on the other boundary types are 
provided elsewhere (T. F. Russell and R. W. Healy, manu- 
script in preparation, 1993). It is convenient to refer to (14), 
since it exemplifies some of the necessary modifications to 

{7). The first term in (7) or (14) does not appear because the 
triangular region of interest does not meet the spatial domain 
at t •*•. Essentially the mass that was represented by this 
integral is now represented by the advective component of 
the boundary flux integral. The dispersion term correspond- 
ing to (xi_.(!/2), t n+l) in (!4• is now evaluated at (I, t n*•) 
with time weight At, while the term corresponding to 
{Xi+{112}, tn+ 1) now has a time weight of zero and therefore 
does not appear. The limits on the first integral on the 
right-hand side of (7) are adjusted accordingly, and the 
second integral on that side is transformed to an integral over 
time by replacing dx with v(l, t) dt. Combining these 
observations and noting that Wr + • • I for all terms, we can 
write 

v(l, t)c(l t) - D --- (l, t) dt + DAt -- (l, t n+•) 
.J t " ' fix fix 

•.• f tn+l _ I c(x t •) dx+ f(l, t)(t-tn)v(/, t) dt 
•r•+•l/2} J t n 

Imposing the Neumann condition with zero dispersive flux, 

v(l, t)c(l, t) dt = c(x, t n) dx + f(l, t) 
.Jr n L+1112• n 

.(t-tn)v(l, t) dt (26) 

Equation (26) is solved for •+•1/2• ). In so CL+ = c(l, t n+! 
doing, it is assumed that c(l, t) varies linearly in time for t" 
-< t -< t n+i and that c(x, t "+•) varies linearly in space forxL 
-< x -< XL+(I/2) = I. The trapezoid rule is used for the 
boundary flux integral. With intermediate temporal integra- 
tion points, t}, defined by {16), we follow (17), (18), and (19) 
to get 

• tn+t v(l, t)c(l, t)WL+I(I, t) dt n 

1 (t'•+•- t}_l)v(l, t])c{l, tl) 
2 

k=l 

+ (t• - t%)v(l, t;)c(l, t;) 

+ (t[,- t•c_i)•,(l, t•,)c(1, t•c)} 127• 
wheret• = t n,t[. = t n+i andK + 1 is the total number 
of integration points used and is equal to the number of 
spatial integration points that lie in [x•+•/:}, II at t". Each 
t• co•esponds to the time at which a spatial integration 
point within that interval intersects the boundary at l when 
forward tracking from t n . The first integral in the right-hand 
side of (26} is evaluated as previously described, keeping in 
mind that the integration point x•.{•,,2} now ca•es only the 
mass located to its right as shown in Figure 7b. The integral 
containing f is evaluated in analogy to 07). 

Previous papers a•,ut the finite-element ELLAM formu- 
lation [Celia et al., 1990; Russell, 19901 have considered 
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TABLE 1. Mean-Square Errors Between Calculated and Analytical Results for Test Problem 1 

Cr 

0.0125 0.125 0.333 0.700 1.00 2.:50 

Pe = 0.2 

FVE2 4.4E- 5* 2.4E- 6 3.0E- 7 1.1E-6 4.7E- 7 2.6E- 6 
FVE4 1.1E-6 2.3 E- 7 1.4E - 8 1.8E- 7 4.7E- 7 2.6E- 6 
FVE8 2.5E- 7 6.4E- 9 3.5E- 8 2.1 E- 7 4.7E- 7 2.6E- 6 
FVE 16 5.2E- 8 6.4E-9 4.6E- 8 2.3 E- 7 4.7E- 7 2.6E-6 
FVEE 1.0E-9 6.4E-9 5.1E-8 2.3E-7 4.7E-7 2.6E-6 
CD 1.3E-8 1.3E-8 1.7E-8 4.3E-8 9.8E-8 2.0E-6 
BD 1.8E- 5 2.3 E- 5 3.3 E- 5 5.6E- 5 7.9E- 5 2.5E-4 

Pe=2. 

FVE2 1.3E-4 7.8 E-5 1.7E- 5 2.2E- 5 7.7E- 8 5.7E- 7 
FVE4 3.4E-5 9.9E-6 1.1E-6 7.9E-8 7.7E-8 5.7E-7 
FVE8 8.3 E -6 1.7E- 7 1.2E- 7 2.3 E- 8 7.7E- 8 5.7E- 7 
FVE 16 1.9E- 6 1.7E-7 5.8E- 8 3.5E- 8 7.7E- 8 5.7E- 7 
FVEE 1.9E-7 1.7E-7 5.9E- 8 4.0E- 8 7.7E- 8 5.7E- 7 
CD 3.0E-6 3.0E-6 3.4E- 6 5.1E -6 8.2E- 6 8.7E- 5 
BD 4.4E- 4 5.2E-4 6.8E- 4 1.0E- 3 1.3 E- 3 2.7E- 3 

Pe = 20 
FVE2 1.3E-3 9.6E-4 3.3E-4 1.1E-4 9.2E-9 1.0E-7 
FVE4 5.3E-4 2.2E-4 5.2E-5 1.1E-5 9.2E-9 1.0E-7 
FVE8 2.0E-4 5.2E-5 2.4E-5 6.7E-6 9.2E-9 1.0E-7 
FVE 16 8.6E- 5 5.2E- 5 2.1E-5 5.8E- 6 9.2E- 9 1.0E-7 
FVEE 6.2E-5 5.2E-5 2.1E-5 5.7E-5 9.2E-9 1.0E-7 
CD 5.6E- 4 5.7E-4 6.0E-4 7.2E-4 8.9E-4 2.5E- 3 
BD 2.9E-3 3.2E-3 3.8E-3 4.8E-3 5.5E-3 8.7E-3 

Cr is Courant number. Pe is cell Peclet number. FVEX is FVELLAM with NS = X. FVEE is 

FVELLAM with exact integration. CD is centered finite-difference method. BD is backward 
finite-difference method. 

*Read 4.4E-5 as 4.4 x 10 -5. 

temporal discretizations of the outflow boundary, in which 
the triangular space-time region discussed above is subdi- 
vided into elements corresponding to a series c(l, t•), ß .. , 
c(l, t•:) = c(l, t n+•) of unknowns. The idea is that the 
temporal resolution of the outward flux reflects the same 
level of detail as the spatial resolution of the concentration 
profile approaching the boundary. This could be done with 
FVELLAM as well and is addressed elsewhere (T. F. 
Russell and R. W. Healy, manuscript in preparation, 1993). 

Mass Conservation 

Equation (7), in conjunction with appropriate boundary 
conditions selected from (17), (20), (23), and (25), and the 
discretizations of each of these equations represent a con- 
servative statement of solute transport for each time step 
over the entire domain x • [0, l]. This is easily seen by 
noting that the test functions (and approximate test func- 
tions) sum exactly to 1 over all interior cells and inflow and 
outflow boundaries. Care must be taken, however, in eval- 
uating the terms in those equations to insure mass conser- 
vation in practice. The mass at the beginning of each time 
step [t n, t n+ ! ] must be integrated correctly, motivating the 
forward tracking scheme we have employed. Also, boundary 
fluxes must be integrated correctly; as with any scheme, 
FVELLAM can conserve mass only to the accuracy of its 
boundary fluxes. 

RESULTS 

Problem 1 

In the first test problem, solute transport through a one- 
dimensional vertical column was simulated for a period of 2 

hours. A steady flow of water was maintained in the column. 
Initially, the water in the column was solute free. At time 0, 
the concentration of inflowing water was set to Co. Ogata 
and Banks [1961] give the analytical solution to this problem. 
The simulation was begun at time 1 hour, with initial 
concentrations in the column determined by the analytical 
solution at that time. This was done to avoid oscillation at 

early times due to the incompatibility of initial and boundaI•i 
conditions. Simulations were run with the finite volume 
ELLAM code and with a standard finite-difference code 

[Healy, t990] using centered (CD) and backward (BDt 
differencing for spatial and temporal derivatives. The follow- 
ing constants were used: 

Ax=2 cm v=25 cm/h 

D = av a = 0.1, 1.0, 10.0 cm 

At = 0.001, 0.01, 0.026667, 0.056, 0.08, 0.20 

NS=2,4,8, 16 

Values for a, At, and NS were held constant within each 
simulation. The values of a correspond to cell Peclet num- 
bers (Pe) of 20, 2, and 0.2, respectively, while the time step 
sizes correspond to Courant numbers (Cr) of 0.0125, 0.125, 
0.333, 0.7, 1.0, and 2.5. 

Results, in terms of mean-square errors, are shown in 
Table 1. Included in that table are results from using exact 
integration of the storage integral in (9) with FVELLAM. 
These values, in theory, represent the most accurate results 
that can be obtained by the method. Comparison of these 
values with other FVELLAM results gives an indication of 
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the improvement in accuracy obtained as NS is increased. 
For Pe equal to 2 and 20, FVELLAM clearly outperforms 
the standard FDMs, especially for the higher values of Cr. 
Figure 8 shows a comparison of results of the different 
methods for Pe = 20 and Cr = 0.7. Large numerical 
oscillations are present in the CD results, while numerical 
dispersion dominates the BD results. There is little visual 
difference among the FVELLAM results, with the exception 
of those for NS = 2, which display a slight amount of 
numerical dispersion. At Pe = 0.2, the FVELLAM results 
have an accuracy similar to that produced by the CD 
method. While the FVELLAM approach may offer no 
advantage for this type of dispersion-dominated problem for 
which standard numerical methods work well, it is notewor- 

thy that the FVELLAM approach can produce good results 
at low Courant numbers. These types of problems have 
typically been very difficult to solve accurately by charac- 
teristic methods without added numerical dispersion [Neu- 
man, 1981; Healy and Russell, 1989]. Whereas CD and BD 
show decreasing accuracy with increasing Cr at any value of 
?e, the trend in accuracy of FVELLAM is more complex. 
There appears to be an optimum value of Cr that produces 
the best results. That value increases as P e increases, being 
about 0.333 for Pe = 0.2, 0.7 for Pe = 2.0, and 1.0 for 
Pe = 20.0. For values of Cr that are less than this optimum 
value, slight amounts of numerical dispersion may creep into 
the calculations because the number of numerical integra- 
tions {and interpolations) increases with an increasing num- 
ber of time steps. At values of Cr greater than the optimum 
value, the reduced accuracy is probably due to time trunca- 
tion error from the use of backward differencing in (4). For 
all values of NS, the amount of numerical dispersion tends to 
increase as Cr decreases and as Pe increases. The improve- 
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Fig. 8. Results of problem I for Pe = 20 and C,. = 0.7: 
centered finitc-di•crcncc method (CD), backward finite-difference 
meth• (BD), and FVELLAM with exact integration (FVE'E); (b) 
FVELLAM with NS = 2• 4, 8, and 16. 

TABLE 2. Mean-Square Errors Between Calculated and 
Analytical Results for Variable Grid Spacing Verson 

of Test Problem I for Different Value• of Time 

Step (.xt } and Dispersivity 
,, 

At 

0.001 0.01 0.056 0.08 

a= 10 
FVE2 8.97E-6' 6.13E-6 1.94E-7 3.35E-7 
FVE4 2.25E-6 9.29E-7 2.84E-7 6.33E-7 
FVE8 5.47E-7 4.25E-8 3.36E-7 7.51E-7 
FVEI6 1.31E-7 1.12E-8 3.63E-7 7.84E-7 
FVEE 1.44E-8 1.76E-8 3.76E-7 7.95E-7 
CD 1.11E-7 1.13E-7 1.84E-7 2.87E-7 

a= 1.0 

FVE2 2.20E-4 1.63E-4 1.39E-6 6.55E-6 
FVE4 6.43E-5 3.14E-5 2.65E-7 3.57E-7 
FVE8 1.71E-5 2.69E-6 1.34E-7 4.07E-7 
FVEI6 4.45E-6 8.25E-7 1,51E-7 5.20E-7 
FVEE 7.63E-7 7.06E-7 1.76E-7 5.67E-7 
CD 1.75E-5 1.77E-5 2.24E-5 2.86E-5 

a=O.l 
FVE2 1.54E-3 1.29E-3 1.84E-4 1.68E-4 
FVE4 7.27E-4 4.71E-4 4.09E- 5 3.98E-5 
FVE8 3.47E-4 !.97E-4 2.85E-5 3.37E-5 
FVEI6 2.29E-4 1.99E-4 2.77E-5 3.45E-5 
FVEE 2.57E-4 2.13E-4 2.91E-5 3.50E-5 
CD 1.24E-3 1.24E-3 1.33E-3 1.43E-3 

*Read 8.97E-6 as 8.97 x 10 -6. 

ment in results gained by increasing NS appears to be 
inversely related to Cr, with the most improvement occur- 
ring at Cr = 0.0125. For all runs listed in Table 1 (and all 
other tables), mass was conserved to machine accuracy 
(approximately 7 digits'). 

To further examine the sensitivity of results to NS, we 
look at a variable-coefficient case that is produced when the 
grid spacing is nonuniform. Table 2 shows results obtained 
with the following modifications to test problem 1: 

Ax• =0.1 

Ax,i= 1.2Axj_ t j = 2, '', , 19 

Ax/=3 j> 19 

At = 0.001, 0.01, 0.056, 0.08 

For this version of the problem the simulation ran from an 
initial time of 0.3 hours up to 2.3 hours in order to assure that 
the solute front remained within the variabl> spaced section 
of the grid. In Table 2 the same trends are present that •'ere 
in Table 1. It does appear that the FVELLAM results are 
slightly more sensitive to the value of NS for variable 
spacing than for uniform spacing. 

Problem 

The second test problem involves fluid injection at a 
constant rate from a fully penetrating well in a confined 
aquifer. Axial symmetry' is assumed, and radial coordinate• 
are used in the simulation. The solute concentration within 
the aquifer is initially 0, and the concentration of the injected 
water is co. Analytical solutions to this problem have been 
developed by Tang and Babu [19791 and HSieh [19861. 
Hoopes and Harh•'man [ 1967] and Gethar anti Collins [ 1971J 
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TABLE 3. Mean-Square Errors Between Calculated and 
Analytical Results for Test Problem 2 

At 

0.5 5. 50. 250. 

a=10. 
FVE2 9.54E-5' 6.80E-5 2.01E-6 1.14E-5 
FVE4 2.35E-5 1.02E-5 5.42E-7 1.13E-5 
FVE8 5.29E-6 5.52E-7 4.68E-7 1.12E-5 
FVE16 1.0!E-6 1.27E-8 4.79E-7 1.12E-5 
FVEE 7.94E-8 3.96E-8 4.85E-7 1.12E-5 
CD 7.36E-6 7.37E-6 9.84E-6 2.80E-4 

a=2 
FVE2 1.73E-3 1.26E-3 3.14E-5 8.71E-6 
FVE4 4.77E-4 2.14E-4 4.08E-6 8.65E-6 
FVE8 1.14E-4 1.50E-5 5.15E-6 9.08E-6 
FVE16 2.46E-5 6.63E-6 5.70E-6 9.19E-6 
FVEE 9.26E-6 8.40E-6 5.87E-6 9.34E-6 
CD 7.04E-5 7.10E-5 1.62E-4 7.16E-3 

*Read 9.45E-5 as 9.45 x 10 -5. 

developed approximate analytical solutions. The aquifer was 
assumed to be 10 m thick. Spacing in the radial direction 
increased from 0. ! m at the injection well by a factor of 1.2 
until a maximum size of 5 m was reached. The length of the 
grid in the radial direction was 847 m. Injection rate was 225 
m3/h, and the radial flow boundary was set at a constant 
pressure head. A pumping period of 2000 hours was simu- 
lated. The following parameter values were used: 

D=av a=2., 10. m 

At = 0.5, 5., 50., 250. hours 

solve the equation for multidimensional problems. We have 
demonstrated that FVELLAM can produce accurate results 
for all test problems examined here. The method is particu. 
larly well suited to solve advection-dominated problems that 
are difficult to solve by standard methods. 

Although FVELLAM requires more computational effort 
than does the standard finite-difference method for a prob. 
lem with the same spatial and temporal discretization, 
FVELLAM permits the use of coarser grids and larger time 
steps with little loss of accuracy. Therefore a large savings in 
computational effort can be realized. For any fixed spatial 
grid, the amount of additional computation time required by 
FVELLAM relative to standard FDM is related to the 
number of integration points used in each cell (NS) and the 
Courant number. The most time-consuming aspect of 
FVELLAM is tracking, and the amount of tracking in- 
creases as NS increases. Also, because this code tracks on a 
cell-by-cell basis, the work required increases as the Courant 
number increases because the number of cells that each 
point passes through increases. It should be noted that the 
amount of work required by FVELLAM is independent of 
the cell Peclet number. It is not practical to develop a 
formula to predict the amount of work required by FVEL- 
LAM, but we can compare work among methods used in test 
problem 1. Table 4 shows time required, per time step, to 
solve the ADE for test problem 1 for a uniform grid (•Lr = 2) 
of 150 nodes. Linking Tables 1 and 4 gives an idea of the 
relative work required by each method to solve to a given 
level of accuracy. For example, at Pe = 2.0, NS = 2, and Cr 
= 2.50 FVELLAM produces a mean-square error of 0.566 
x 10 -6 in 5.61 s of CPU time, while for centered differencing 
the best accuracy (0.299 x 10 -5) is obtained for Cr = 
0.0125 and requires 44.80 s. So, FVELLAM produces more 

NS--2,4,8, 16 

Table 3 shows results in terms of mean-square error 
between calculated and analytical [Hsieh, 1986] results at 
2000 hours for FVELLAM and CD. Figure 9 shows a 
comparison of results at 500, 1000, and 2000 hours for At = 
50 and a = 2. At time 2000, the accuracy of the CD results 
generally lies between that of FVE4 and FVE8 for time step 
sizes less than 50 hours. At a time step size of 250 hours, all 
FVELLAM results are much more accurate than the CD 

results. Numerical dispersion affects the FVELLAM results 
for low values of NS. This is manifested by the smearing of 
the solute front. Numerical dispersion increases as the time 
step size and the value of a decrease. 
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DISCUSSION 

The finite-volume Eulerian-Lagrangian localized adjoint 
method represents a significant step in the implementation of 
ELLAM theory. By application of an integrated finite- 
difference approach, we believe that we have created a 
framework from which multiple-dimension transport simu- 
lators can be developed. Our method conserves mass both 
globally and locally on Lagrangian space-time elements, is 
capable of treating general boundary conditions in a consis- 
tent and straightforward fashion, and is not limited by 
restrictions on the Courant number. Except for boundary 
contributions, the matrix equation that is produced by 
FVELLAM is symmetric, and therefore generalized meth- 
ods of preconditioned conjugate gradients may be used to 
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Fig. 9. Results of problem 2 for a = 2 and At = 50: tat 
FVELLAM with exact integration (FVEE) and centered finite- 
difference method (CD); (b) FVELLAM with NS = 2 and 4• 
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accurate results in less computation time than the FDM for 
this example. 

In viewing Table 4, it should be kept in mind that these 
times are only for solving the ADE. Most problems of 
practical concern involve solving the groundwater flow 
equation in addition to the ADE. For these problems, the 
relative differences in total computation time per time step 
among the different methods will be much less than that 
shown in Table 4. Also when treating two-or three- 
dimensional problems, solving the matrix equation requires 
a larger proportion of computational time than for one- 
dimensional problems; therefore the tracking procedure at 
higher dimensions will be less of a consideration. 

For many problems, the work requirements of FVEL- 
LAM could be reduced dramatically by incorporation of an 
.adaptive scheme to automatically determine the number of 
spatial integration points required for each cell (as opposed 
to using a fixed number for each cell). With this approach, 
NS could be given values of, for example, 8 or 16 in cells that 
lie on a sharp concentration front. Cells that lie in regions 
where there was little change in concentration would require 
an NS value of only 2. Such an adaptive scheme will be a 
necessary component of any practical multidimensional 
FVELLAM. 

Them are a few limitations to our method that should be 
addressed. For problems with a high Peclet number and a 
low Courant number, numerical dispersion can enter into the 
solution if NS is not great enough (Table 1). It is doubtful 
whether the adaptive selection of NS as described above 
would alleviate this problem. These problems will be more 
easily solved with FVELLAM if the grid spacing is de- 
creased (resulting in a decrease in Pe) or the time step size 
is increased (resulting in an increase in Cr). 

Slight oscillations can appear in results of problems in- 
volving steep concentration fronts, if there are not a suffi- 
ci. ent number of finite-difference nodes across the front. 
Russell [1985] found that with MMOC three to four nodes 
were needed across the width of the front to avoid oscilla- 
tions. The width of the front was assumed to be the distance 
between the points where concentrations were equal to 0.05 
and 0.95 of the difference in concentration between the head 
and the toe of the front. We have found FVELLAM to 
behave simi!afiy to MMOC in this respect. The number of 
nodes required across a front is therefore independent of the 
steepness of the front. This requirement is much less strin- 
gent than the node-spacing requirement for the FDM in 
order to avoid numerical dispersion or oscillation, Pe -< 2, 
which forces the number of nodes across a front to increase 
as the dominance of advection increases. This can be qual- 
itatively demonstrated by considering the analytical solution 

TABLE 4. Work Required, in Seconds, to Solve the Advection 
Dispersion Equation for an Individual Time Step in 

Test Problem 1 

Courant Number 

0.0125 0.125 0.7 1. 2.5 

FVE2 0.327 0.375 0.426 0.446 0.561 
FVE4 0.367 0.420 0.447 0.503 0.640 
FVE8 0.436 0.511 0.553 0.612 0.792 
FVE16 0.581 0.684 0.765 0.840 1.137 
CD 0.224 0.255 0.255 0.276 0.276 

to problem 1. The cell Peclet number is inversely propor- 
tional to a. So a decrease by a factor of 100 in a would 
require Ax to also be reduced by a t•actor of !00 to maintain 
Pe = 2. However, according to the analytical solution for 
problem 1, the width of the solute front increases propor- 
tional to a 1t2. So a hundredfold decrease in a would require 
that Ax be reduced by only a factor of 10 to avoid oscillations 
with FVELLAM. Note that this would multiply Pe by 10: 
that is, as a decreases we can decrease Ax as a•;2, thereby 
increasing Pe as a -1!2. For example, for the case Pe = 20 in 
problem 1, we have run tests in which we decrease a and Ax 
by factors of 100 and 10, respectively, resulting in the value 
Pe = 200. Test results exhibited essentially the same 
behavior as those reported in Table !. Thus FVELLAM 
behavior depends on the relationship between the front 
width and the grid size, as one would desire, rather than on 
the Peclet number. 

As presented here, FVELLAM is used only for one- 
dimensional applications. Extension of the method to multi- 
ple dimensions is currently in development. While concep- 
tually straightforward, efficient implementation of this 
extension faces several challenges. Local mass conservation 
will be more difficult to achieve with the forward tracking 
scheme because of the multidimensional velocity field. An 
increased number of SSIPs will be required {at least nine for 
each finite-difference cell in two dimensions) and will result 
in increased computer storage and execution time. The use 
of a backtracking scheme to evaluate the integral in (9) may 
be an attractive alternative in areas of smoothly varying 
concentration. This raises the possibility of adaptively se- 
lecting, on a cell-by-cell basis, either the forward or back- 
tracking schemes to evaluate the integral. Another concern 
in multiple dimensions is treatment of boundary fluxes. The 
integrals that represent these fluxes will need to be evaluated 
over both space and time. 

S U MM ARY 

A new method has been developed and tested for solving 
the one-dimensional advection-dispersion equation. The fi- 
nite-volume Eulerian-Lagrangian localized adjoint method 
has been demonstrated to accurately and efficiently solve 
problems that are strongly advection dominated. For disper- 
sion-dominated problems, the new method compares well in 
terms of accuracy with the standard centered finite- 
difference method, but is slightly less efficient than the latter 
method in terms of computation time. The method is mass 
conservative and is not restricted by limitations on the size 
of the Courant number. 

The FYELLAM approach extends previous ELLAM re- 
sults by application of an integrated finite-difference approx- 
imation scheme and by its ability to conserve mass locally on 
each finite volume. Mass conservation is facilitated by 
application of a numerical integration scheme at the current 
time level followed by forward tracking of quadrature points 
to the next time level. Forward tracking also eliminates the 
difficulty of intercepting inflow boundaries that is encoun- 
tered when backtracking is used {as is common in most 
characteristic methods). Problems with variable coefficients 
can be treated in either Cartesian or radial coordinates. 
Detailed information was presented on treatment of integra- 
tion, tracking, and boundary algorithms. 
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APPENDIX: RADIAL COORDINATES 

Equation (7) can be written in radial coordinates simply by 
replacing x with r and multiplying each term by 2•. The mass 
storage term on the left-hand side of the equation becomes 

•r ri+•/2• 2•rrc(r, t n+l) dr 
i-{ 1/2) 

Once again assuming a linear change in concentration 
between adjacent nodes and applying a weighted trapezoid 
rule produces the following approximation (exact for linear 
c) which is analogous to (8) for interior cells: 

•r ri+t•/2) 2•rrc(r, t n+l) dr 
i-Ill2} 

= 2rrAr i Ar i + Ari_ • ri-(1/3)c(ri-l' 

ri-(1/3) + + [ar + 

Ari+l + Ar i + •ri+ 1 ri+(l/3) c(ri, t n+l) 

1 Ar i } - ri+(1/3)c(ri+l, t n+•) , (A1) + 4 Ar i + Ari+ 1 
where 

_5 1 
ri_(1/3 ) -- [ ri-(I/2) + • ri+(1/2), 

_1 5 
ri+(1/3 ) -- •ri_(1/2 ) + • ri+(1/2)' 

The mass storage term for time level n, which is given by 
an analogue of (9), can be written for the specific case of zero 
Courant number as 

fr ri*+lla• 2•rrc(r, t n) dr 

=/i 2•rrc(r, tn)Wi(r, t n) dr 

= 2 I c ri_(1/2 ) -•-, • ri_(1/2 ) + - •r E + tn 
j=l 

1 

+ _ c(ri_(1/2) ' t n) tn+l 2 Wi(ri-(l/2)' ) 

We wish to ensure that the coefficients for c i-•, c i, and ci, 1 
in (A1) are identical to those in (A2). We look at just the 
coefficient for ci_ 1. The contribution from ci_ • that appears 
in (A2) can be written 

Ari { Wi(ri-(1/2)' t n+l) 2,r Ari + Ari-1 

[( Ari) Ari ( Ari,,t Ari-1 ] ' ri-(1/2) + 3• 2• + ri-(1/2)- 3NS / 2NSJ 

•Fi(NS/2)-I ( 2j)( •rih } + N• • 1- • ri_(•/2 ) +j NS) j=l 

Equating this term with the corresponding coefficient in 
(A1) and simplifying produces the following fomula for 
Wi(ri_(1/2), tn+l): 

Wi(ri-(1/2)' tn+l) = •ri ri-(1/2) + 3• •ri-1 ri-{1/2• 

+ Ar• (•/2) 3NSJ 3NS ] ri- + (A3• 
When unifom spacing is used, this equation simplifies t0 

! Ar 

Wi(ri_(1/2), tn+l) = _ + (A4• 
2 6NSri_tl/2 ) 

The value of Wi(ri+(1/2 ), t n+ 1) can then be obtained as 

Wi(ri+(1/2), t n+l) = 1 - Wi+l(r i + (1/2), tn+l) (A5} 
As with Cartesian coordinates, Wi(r, t n+l) = 1 when 

ri_(l/2 ) + (Ari/NS) --< r--< ri+(1/2 ) - (Ari/NS). Linear 
interpolation is used when r falls outside that interval. 
Equation (13) may be used to determine Wi(?, t "+l } for 
radial coordinates by simply replacing the term Axi/(•x i + 
AXi_l) with the right-hand side of (A3) and the term Axe/ 
(Axi + Axi+i) with the right-hand side of (A5). 

With Wi as defined above, it can be shown that 

o' Wi(r, t n + •)2,rr dr = 2,friAr i tA6• 

so that the test function defines the correct total weighting. 
Thus with the strategic point approach developed for Carte- 
sian coordinates in the text, which is intended to integrate 
test functions accurately, we obtain accurate mass distribu- 
tion and avoid oscillations in radial coordinates as well. 

( Ari_!, / Ari_ 1 ( Aril At'/] ri-(1/2)-3NSJ NS + ri-(l/2)+3NSJ NS] 
1 

+-c(ri+(l/2 ), tn)Wi(ri+(1/2), t n+l) 2 

3NSJ • 

q' ri+(i/2) q' 3NS J N"S 
(A2) 

NOTATION 

c concentration (mL -3). 
Cr Courant number. 

D dispersion coefficient (L 2 T- •). 
f source/sink (mL -3 T-•). 
h specified boundary. 
i index for nodes. 

L equation operator. 
L number of cells in spatial grid. 
I length of domain (L). 

n time level. 

NS number of spatial integration points. 
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NT total number of integration points. 
n(x) outward unit normal on 
?e cell Peclet number. 

$SIP strategic spatial integration points. 
STIP strategic time integration points. 

r final time (T). 
t time (T). 

t* time at which spatial integration point is tracked to 
boundary (T). 

U integration weight (L). 
•, velocity (LT- l). 

Wi approximate test function. 
w test function. 
X tracked location of x (L). 

up{t) position of integration point at time t (L). 
.;c forward tracked location of x(t •) at t n+l (L). 

x* backtracked location of x(t n+i) at t • (L). 
a dispersivity (L). 

•11 domain boundary. 
,Xxi grid spacing for cell i (L). 
•t time step size (T). 

At(x) time in which x backtracks to boundary (T). 
ft solution domain. 
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